

qualitative RT-PCR-based detection of SARS-CoV-2

INSTRUCTIONS FOR USE

50 Tests

PCCSKU15263

v 1.0

Procomcure Biotech GmbH Breitwies 1 5303 Thalgau +43 6229 39608 office@procomcure.com

© 2020 v1.0

TABLE OF CONTENTS

1) INTENDED USE	4
2) PHOENIX DX® DETECTION SYSTEM	4
2.1) QPCR-BASED DETECTION OF SARS-COV-2	4
2.2) Materials Provided	5
2.3) Additional Materials Required	5
2.4) Storage	5
3) CONSIDERATIONS BEFORE STARTING	5
3.1) BIOSAFETY	5
3.2) Specimens	6
3.3) Specimens - Handling and Storage	6
3.4) Sample Preparation / Nucleic Acid Extraction	7
3.5) REACTION SETUP	7
4) ANALYSIS	8
5) LIMITATIONS	10
6) QUALITY CONTROL	10
7) SPECIFICATIONS	10
8) TRADEMARKS	10
9) LITERATURE	10
10) TECHNICAL ASSISTANCE	10
11) SYMBOL DEFINITION (MANUAL & PACKAGING)	11

PhoenixDx® SARS-CoV-2 Multiplex IVD

for diagnostic use

© 2020 v1.0

NOTICE TO PURCHASER

The purchase of this product includes a limited, non-transferable immunity from suit under patent claims for using only this amount of product solely in performance of diagnostic services for human in vitro diagnostics, including reporting results of purchaser's activities for a fee or other commercial consideration, and also for the purchaser's own internal research. No right under any other patent claim is conveyed expressly, by implication, or by estoppel. This product is for laboratory use only.

LICENSE AGREEMENT FOR THE PHOENIXDX® MANUAL:

- Use of this product signifies the agreement of any purchaser or user of the product to the following terms:

 1. The product may be used solely in accordance with the protocols provided with the product and this manual and for use with components contained in the kit only. Procomcure Biotech grants no license under any of its intellectual property to use or incorporate the enclosed components of this kit with any components not included within this kit except as described in the protocols provided with the product, this manual.
- 2. Other than expressly stated licenses, Procomcure Biotech makes no warranty that this kit and/or its use(s) do not infringe the rights of third parties.
- This kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.
 Procomcure Biotech specifically disclaims any other licenses, expressed or implied other than those expressly stated.
- For the purchaser and user of the kit agrees not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. Procomcure Biotech may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the kit and/or its components.

© 2020 v1.0

1) INTENDED USE

PHOENIXDX® SARS-COV-2 MULTIPLEX IVD is a real-time RT-PCR-based diagnostic test for the *in vitro* qualitative detection of 2019-Novel Coronavirus (SARS-CoV-2) in respiratory specimens and sera from patients who meet COVID-19 clinical and/or epidemiological criteria.

PHOENIXDX® SARS-COV-2 MULTIPLEX IVD detects SARS-CoV-2 RNA in nasopharyngeal and oropharyngeal swab samples during infection. Positive results indicate the presence of SARS-CoV-2 RNA; clinical correlation with patient history and other diagnostic information must be considered to determine the actual patient infection status. Positive results do not exclude bacterial infection or co-infection with other viruses.

Negative results do not exclude a SARS-CoV-2 infection and must not be used as the sole basis for patient management decisions. Negative results must be combined with clinical observations, patient history, and epidemiological information.

The use of **PHOENIXDX® SARS-COV-2 MULTIPLEX IVD** is intended for use by clinical laboratory personnel specifically instructed and trained in the techniques of real-time PCR and *in vitro* diagnostic procedures.

The kits follow CDC's and WHO's latest detection guidelines (03/2020).

2) PHOENIX DX® DETECTION SYSTEM

PHOENIXDX® SARS-COV-2 MULTIPLEX IVD is a real-time RT-PCR-based detection system for the 2019 Wuhan coronavirus (**SARS-CoV-2**, formerly **2019-nCoV**). SARS-CoV-2 is considered a novel human coronavirus that is genetically distinct from the common human coronaviruses (229E, NL63, OC43, HKU1), which cause seasonal acute respiratory illness. It is also genetically distinct from the two newer human coronaviruses, MERS-CoV and SARS-CoV.

PHOENIXDX® SARS-COV-2 MULTIPLEX IVD detects the presence of 2 different and highly specific gene sequences of corona viruses and one sequence specific for human RNA serving as a human extraction control (**HEC**). Additionally, a non-infectious target positive control (**TPC**) is included. The positive control is used to confirm functionality of the assays and overall PCR performance, the human extraction control is to evaluate the quality of the RNA isolation independently from the SARS-CoV-2 assays in a different detection channel.

2.1) QPCR-BASED DETECTION OF SARS-COV-2

The first step in the detection of SARS-CoV-2 is the conversion of viral RNA into cDNA. Afterwards, the target sequences unique for SARS-CoV-2 and the **HEC** are simultaneously amplified in one reaction with amplification monitored in real time through the use of fluorescently labelled probes: upon incorporation into the newly amplified DNA strands, the fluorophore (FAM^{TM}) is released and an increase in fluorescence signal can be observed.

Due to the intrinsic mutation rate of coronaviruses, it is possible that mutations in the target sequence occur and accumulate over time. This can lead to false-negative results with a PCR-based detection approach.

© 2020 v1.0

PHOENIXDX® SARS-COV-2 MULTIPLEX IVD addresses this issue by using 2 detection assays on 2 different target sequences to minimize the chance of false-negative results caused by an altered target sequence. The original target sequences for SARS-CoV-2 are included as a non-infectious target positive control (**TPC**) to check the integrity of the detection assays.

Samples tested positive should always be confirmed through complementary methods and additional analysis in an independent laboratory.

PHOENIXDX® SARS-COV-2 MULTIPLEX IVD is compatible with every qPCR cycler with calibrated FAMTM and HEX/VIC channel, whereas normalization with the ROX channel is optional.

2.2) MATERIALS PROVIDED

QUANTITY AND VOLUME	COMPONENT
1 x 50 µl	PhoenixDx® RT Enzyme Mix
1 x 750 µl	PhoenixDx® \$AR\$-COV-2 MULTIPLEX Mix
1 x 200 µl	SARS-COV-2 MULTIPLEX TPC

2.3) ADDITIONAL MATERIALS REQUIRED

- Suitable means & equipment for nucleic acid extraction (see chapter 3.4)
- Real-time PCR detection system equipped for FAM™ and HEX/VIC detection
- Adjustable pipettes & fitting filtered pipette tips
- Nuclease-free water
- Appropriate PSA & workspaces for working with potentially infectious samples
- Surface decontaminants such as DNAZap™ (Life Technologies), DNA Away™ (Fisher Scientific), RNAse Away™ (Fisher Scientific), 10% bleach (1:10 dilution of commercial 5.25-6.0% sodium hypochlorite)
- Nuclease-free tubes / strips / plates to prepare dilutions, mastermixes etc.
- Nuclease-free tubes / strips / plates corresponding to the PCR device
- Suitable storage options for reagents and specimen (4°C, -20°C, -70°C)

2.4) STORAGE

- Store all components at -20°C and avoid repeated freeze and thaw cycles (≤ 3 freeze/thaw cycles; prepare aliquotes if required).
- Protect the PhoenixDx® **SARS-COV-2 MULTIPLEX Mix** from light as prolonged exposure can diminish the performance of the fluorophores.
- If the kit components have been damaged during transport, contact Procomcure Biotech. Do not use as performance may be compromised.
- Keep reagents separate from sample material to avoid contamination.
- Do not use after the designated expiry date.

© 2020 v1.0

3) CONSIDERATIONS BEFORE STARTING

3.1) BIOSAFETY

- Wear appropriate personal protective equipment (e.g. gowns, powder-free gloves, eye protection) when working with clinical specimens.
- Specimen processing should be performed in a certified class II biological safety cabinet following biosafety level 2 or higher guidelines.
- For more information, refer to:
 - Interim Guidelines for Collecting, Handling, and Testing Clinical Specimens from Patients Under Investigation (PUIs) for 2019 Novel Coronavirus (SARS-COV-2) https://www.cdc.gov/coronavirus/2019-nCoV/guidelines-clinicalspecimens.html
 - Biosafety in Microbiological and Biomedical Laboratories 5th edition available at http://www.cdc.gov/biosafety/publications/.
- The use of **PHOENIXDX® SARS-COV-2 MULTIPLEX IVD** and data evaluation is restricted to trained laboratory personnel only.
- Good laboratory practice is essential for optimal performance of this assay. Special
 care must be taken avoid contamination of the components of the kit. All reagents
 must be closely monitored for impurities and contamination. Discard suspicious
 reagents according to local guidelines and regulations.

3.2) SPECIMENS

Only use appropriate specimens for testing, such as:

- Respiratory specimens including nasopharyngeal / oropharyngeal aspirates or washes, nasopharyngeal / oropharyngeal swabs, broncheoalveolar lavage, tracheal aspirates and sputum.
- Swab specimens should be collected only on swabs with a synthetic tip (such as
 polyester or Dacron®) with aluminum or plastic shafts. Swabs with calcium alginate or
 cotton tips with wooden shafts are not recommended as they may contain substances
 that inactivate some viruses and inhibit PCR testing and should only be used if dacron
 or rayon swabs are not available.

3.3) SPECIMENS - HANDLING AND STORAGE

- Specimens can be stored at 4°C for up to 72 hours after collection.
- If a delay in extraction is expected, store specimens at -70°C or lower.
- Clinical specimens must be considered potentially infectious and treated accordingly.

Do not vortex specimens as this will fragment the RNA and lead to failure of the **PHOENIXDX® SARS-COV-2 MULTIPLEX IVD** assays.

PhoenixDx® SARS-CoV-2 Multiplex IVD

for diagnostic use

© 2020 v1.0

Do not use specimens if

- they were not kept at 2-4°C (≤ 4 days) or frozen at -70°C or below.
- they are insufficiently labelled or lack documentation.
- they are not suitable for this purpose (see above for suitable sample material).
- the specimen volume is insufficient.

3.4) SAMPLE PREPARATION / NUCLEIC ACID EXTRACTION

- The performance of RT-PCR assays strongly depends on the amount and quality of sample template RNA. It is strongly recommended to qualify and validate RNA extraction procedures for recovery and purity before testing specimens.
- Suitable nucleic acid extraction systems successfully used in combination with PHOENIXDX® DETECTION KITS include: Quick-RNA Viral Kits (Zymo Research), bioMérieux NucliSens® systems, QIAamp® Viral RNA Mini Kit, QIAamp® MinElute Virus Spin Kit or RNeasy® Mini Kit (QIAGEN), EZ1 DSP Virus Kit (QIAGEN), Roche MagNA Pure Compact RNA Isolation Kit, Roche MagNA Pure Compact Nucleic Acid Isolation Kit, Sera-Xtracta Virus/Pathogen Kit (GE Healthcare) and SphaeraMag® DNA/RNA Isolation Kit (Procomcure).
- Only extract the number of specimens that will be tested in a single day.
- Do not freeze/thaw extracts more than once before testing as each freeze/thaw cycle
 will decrease the RNA quality. For optimal results, use directly and do not freeze and
 thaw before use.
- Extracted nucleic acids should be stored at -70°C or lower and (if re-testing is expected) stored in aliquots.

3.5) REACTION SETUP

- 1) Make sure that all necessary equipment and devices are suitable, calibrated and functional before starting the experiments.
- 2) Decontaminate equipment and workspace and prepare everything needed for the following experiment to keep the workflow short and repeatable.
- 3) Switch on the PCR detection system and program it to avoid delays after setting up the reactions.
- 4) Thaw all components of **PHOENIXDX® SARS-COV-2 MULTIPLEX IVD** on ice and mix gently but thoroughly to ensure even distribution of components. Collect liquid at the bottom of the tube with a quick spin.
- 5) Set up your **Mastermix Plate**:
 - a. Always prepare control reactions with nuclease-free dH₂O instead of sample material (NTC) to detect contamination in your reagents.
 - b. When using the provided target positive control (TPC), use 4 µl / reaction.
 - c. > 2 replicates / sample are strongly recommended.
 - d. Prepare enough mastermix for all planned reactions. It is recommended to prepare mastermix for 2 additional reactions to compensate for pipetting inaccuracies.
 - e. Distribute the mastermix to your strips/plate.

© 2020 v1.0

COMPONENT	VOLUME
PhoenixDx® Enzyme Mix	1 µl
PhoenixDx® SARS-COV-2 MULTIPLEX Mix	15 µl
isolated sample RNA / TPC / NTC	4 μl / 4 μl / 4 μl dH ₂ O

- 6) Transfer the Mastermix Plate to a separate workspace to add the sample material. Preparing reagents and final reaction setup in separate workspaces helps to avoid contamination of equipment and reagents with sample material.
 - a. Prepare negative reactions first and seal them before handling positive samples. It is recommended to only bring potentially positive sample material and the included target positive control to the workspace once the NTC is prepared and sealed.
 - b. Add your samples to the Mastermix Plate. An example setup is given in Fig 2).
 - c. Keep reactions on ice until transferring them to the PCR device.
- 7) Transfer the reactions to the PCR device, then cycle according to these guidelines:

Step	CYCLES	TEMPERATURE	Duration
Reverse Transcription	1	50°C	5 minutes
Initial Denaturation	1	95°C	5 minutes
Amplification	40	95°C	5 seconds
	40	60°C1	30 seconds

¹ Enable Data Collection for **FAM™** (for virus detection) and **HEX/VIC** (for human extraction control). If required, set Passive Reference to **ROX**.

Once the run is finished, do not open the reaction tubes to avoid contamination and discard according to local guidelines and regulations. Do not autoclave as this may contaminate laboratory equipment with amplicons.

4) ANALYSIS

dH₂O controls (NTC) must not give a Ct value for any assay. If they do, the reaction was
contaminated with sample RNA / cDNA. Decontaminate equipment and workspace
and repeat the reactions. Also, check for device-derived artifacts or falsely placed
threshold. If a contamination persists, use fresh reagents.

PhoenixDx® SARS-CoV-2 Multiplex IVD

for diagnostic use

© 2020 v1.0

- For a sample to be considered positive for SARS-CoV-2, the FAM™ channel must give a positive Ct value. Signals with a Ct >35 should be confirmed in a second run. Amplification of the HEC in the HEX/VIC channel is expected around Ct 22-29. Should the HEC fail to amplify, the sample must still be considered positive. This outcome is possible when having an unusually high virus titer, or the sample was not of human origin, but cell culture derived or analysis of surface contamination.
- For a sample to be considered negative for SARS-COV-2, the SARS-CoV-2 assays in the FAM™ channel must not give a positive Ct value. The HEC must give a positive Ct value in the HEX/VIC channel (Ct 22-29) for these samples to ensure that sample material of suitable quality was present.
- If no amplification signal in neither the FAM™ channel nor the HEX/VIC channel is observed for any assay, PCR was inhibited. Check reaction setup and device settings and repeat the RNA extraction if necessary. Results are invalid and cannot be interpreted.
- All reactions containing RNA isolate must give positive Ct values for the HEC assay when
 working with samples of human origin. The Ct values are expected around 22-29. Failure
 to amplify the negative human extraction control indicates a flawed RNA extraction or
 loss of RNA isolate due to RNAse contamination. Late Ct values for the HEC may
 indicate a low RNA quality / amount in the extract.
- When using the TPC, a positive Ct in the FAM™ channel and in the HEX/VIC channel must be observed. The Ct values for the TPC should be < 35 cycles. If the Ct value does not correspond to the expected value or not all assays are tested positive, PCR was compromised. Check the reaction setup and PCR device settings and repeat the reactions. Repeated freeze and thaw cycles of the TPC can compromise its quality resulting in late Ct values.</p>

Always analyze your sample reactions independently of the TPC reactions. The TPC is an artificial control construct resulting in a significantly higher signal strength than actual samples. This will lead to a distorted picture when analyzed together with actual samples.

For analysis, the **threshold must be set only for the wells containing sample material** not including wells with TPC reactions. If amplification in sample reactions seems to have failed, check if the TPC reactions are displayed simultaneously.

© 2020 v1.0

Table 1 Interpretation of amplification results with PhoenixDx® SARS-CoV-2 Multiplex

SARS-CoV-2	HEC	Interpretation
+	+	SARS-CoV-2 target sequences & HEC were amplified. The sample is considered positive for SARS-CoV-2.
1	+	Only the target sequence for the HEC was amplified. The sample is considered negative for SARS-CoV-2.
+	/	SARS-CoV-2 target sequences were amplified but not the HEC. The sample must still be considered positive for SARS-CoV-2. This outcome is possible when having an unusually high virus titer, or the sample was not of human origin, but cell culture derived or analysis of surface contamination.
/	/	PCR was inhibited, results are invalid.
+	+	Expected Result for the TPC .

5) LIMITATIONS

- For reliable results, it is essential to adhere to the guidelines given in this manual. Changes in reaction setup or cycling protocol may lead to failed experiments.
- Depending on the sample matrix, inhibitors may be present in the isolated RNA and disable reverse transcription and / or PCR amplification. If this is the case, another sample type or isolation method may be beneficial.
- Spontaneous mutations within the target sequence may result in failure to detect the target sequence.
- Results must always be interpreted in consideration of all other data gathered from a sample. Interpretation must be performed by personnel trained and experienced with this kind of experiment.
- For safety reasons, specimen collection, transport, storage and processing procedures must be performed by trained personnel only.
- This assay must not be used on specimens directly. Appropriate nucleic acid extraction methods have to be conducted prior to using this assay.
- Reliable results depend strongly on proper sample collection, storage and handling procedures.

6) QUALITY CONTROL

In accordance with Procomcure Biotech GmbH EN ISO 13485-certified Quality Management System, each lot of **PhoenixDx® SARS-COV-2 MULTIPLEX IVD** is tested against predetermined specifications to ensure consistent product quality.

7) NON-CLINICAL PERFORMANCE EVALUATION

7.1) ANALYTICAL SPECIFICITY IN SILICO ANALYSIS

The *in silico* analysis for possible cross-reactions with the organisms listed in Table 4was performedby mapping primers used with PHOENIXDX® SARS-COV-2 to the sequences downloaded from NCBI. If any two of primer sets were mapped to a sequence on opposite strands with short distance in between, potential amplifications were flagged. No potential cross reactivity is expected based on the *in silico* analysis.

7.2) ANALYTICAL SPECIFICITY -IN VITROANALYSIS

PHOENIXDX® SARS-COV-2 was tested for specificity against a set of 60 different controls (e.g. viral, bacterial and human) including one artificial SARS-CoV-2 genome and one SARS-CoV-2 isolate. The experiments were performed according to the protocols and instructions given in this manual.

Table 4 List of targets used for in vitro specificity testing

TARGET	RESULT	Target	RESULT	TARGET	RESULT
HSV-1 (herpes simplex 1)	/	Candida albicans	/	Salmonella subterranea	/
HSV-2 (herpes simplex 2)	/	Enterococcus faecalis	/	Salmonella bongori	/
HHV-6 (human herpesvirus 6)	/	Salmonella enterica	/	Plasmodium falciparum	/
HHV-6B (human herpesvirus 6B)	/	Bacillus subtilis	/	Trypanosoma brucei	/
HHV-8 (human herpesvirus 8)	/	Pseudomonas aeruginosa	/	Leishmania major	/
HHV-5 (HCMV)	/	Staphylococcus epidermidis	/	Neisseria gonorrhoeae	/
EBV (epstein barr virus)	/	Clostridium perfringens	/	Neisseira lactamica	/
human gDNA (pool male/female)	/	Candida kefyr	/	Toxoplasma gondii	/
Staphylococcus aureus (Mu50)	/	Candida tropicalis	/	Chlamydia trachomatis D	/
Clostridium difficile	/	Candida glabrata	/	Chlamydia trachomatis LGV	/
Listeria monocytogenes	/	Streptococcus pneumoniae	/	Chlamydia trachomatis C.S.	/
Listeria innocua	/	Serratia marcescens	/	Chlamydophila pneumoniae	/
Listeria ivanovii	/	Shigella flexneri	/	VZV (varicella zoster virus)	/
Legionella pneumophila	/	Pseudomonas sp. AOP	/	Influenza A	/
TOP10 (E.coli)	/	Haemophilus influenzae	/	Influenza B	/
EPEC (E.coli)	/	Pseudomonas stutzeri	/	MERS-CoV	/
Cronobacter sakazakii	/	Enterococcus faecium	/	Artificial SARS-CoV-2	+
Chlamydia trachomatis	/	Acinetobacter baumannii	/	SARS-CoV-2 isolate	+
Helicobacter pylori	/	Campylobacter jejuni	/	TPC (SARS-CoV-2)	+
Yersinia enterocolitica	/	Mycoplasma	/	NTC	/

7.3) ANALYTICAL SENSITIVITY&LINEARITY

The LOD95 (Limit of Detection) defines the number of target sequences (copy number) that can be detected in ≥ 95% of reactions. The LOD95 was determined by testing a serial dilution of isolated SARS-CoV-2 RNA with 8 concentrations in 24 replicates per concentration. Per PCR reaction of 20µl 11 copies of viral genomic RNA have been detected (2.75 copies/µl of the eluate). One copy of viral genomic RNA has been detected in 6 cases of 24 replicas.

8) CLINICAL DATA

The performance of PHOENIXDX® SARS-COV-2 IVD was tested in a paired comparison using collected nasopharyngeal swabs. PHOENIXDX® SARS-COV-2 IVD was evaluated using 100 clinical samples collected from patients with signs and symptoms of an upper respiratory infection against a validated CE IVD reference kit with the intended use of detecting SARS-CoV-2 RNA. RNA isolation was manually performed using spin-column-based isolation kit according to the instructions provided by the manufacturer.

Clinical samples were collected by qualified personnel according to the instructions provided by the manufacturer of the collection device. Samples were tested to be negative with a commercially available nucleic acid test for the qualitative detection of microorganisms associated with common upper respiratory tract infections.

Reference Methode	PhoenixDx® SARS-CoV-2 Multiplex IVD		CoV-2 Multiplex IVD
Actorolico Macadouc		positive	negative
Positive	42	A= 41	B= 1
Negative	42	C= 0	D= 42
Clinical sensitivity = $[a/(a+c)] \times 100 = [40/(40+0)] \times 100 =$		100 %	
Clinical specificity = $[d/(b+d)] \times 100 = [42/(2+42)] \times 100 =$		97,67 %	

9) TRADEMARKS

PhoenixDx®, NucliSens® (bioMérieux), QIAamp®, RNeasy® (QIAGEN), ChargeSwitch® (Invitrogen), ROX™, FAM™ (Life Technologies), DNAZap™, DNA Away™, RNAse Away™

Registered names, trademarks, etc. used in this document, even if not specifically marked as such, are not to be considered unprotected by law.

© 2020 v1.0

10) LITERATURE

Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045. doi:10.2807/1560-7917.ES.2020.25.3.2000045

11) TECHNICAL ASSISTANCE

For questions or technical support, contact Procomcure Biotech:

Procomcure Biotech GmbH Breitwies 1 5303 Thalgau +43 6229 39608 support@procomcure.com

12) SYMBOL DEFINITION (MANUAL & PACKAGING)

Σ	Contains sufficient for <n> tests</n>
REF	Catalogue Number
	Manufacturer
LOT	Batch Code
<u> </u>	Temperature Limit
\square	Use-by Date
i	Consult instructions for use
IVD	In vitro diagnostic

NOTES:

NOTES:

Procomcure Biotech GmbH

Breitwies 1

5303 Thalgau

+43 6229 39608

www.procomcure.com

